生物质颗粒如工业、建筑环境、能源业、交通运输业和农业,这项协议的关键在于,将在2030年之前停止燃煤发电,将加大风能和太阳能发电。比如,到2030年,海上风电将从现在的1GW增加到12GW以上,电气化程度将会更高,意味着会有更多可再生电力,供热电气化程度也会更高。当然,我们也需要储存电力,氢储能技术就带来了新机遇,我们正在快速开发,这将会是未来能源系统的一部分。生物资源、生物质可以用作交通运输燃料、化学物品和工业材料,这就是荷兰的做法。目前来说,我们距离实现目标还道远,眼下我们还在大量使用化石资源,每年消耗能源约3艾焦,即3000皮焦耳。之前提到,我们要减少煤炭使用,也一样要减少使用量,尤其要减少在本地能源中的占比。如今,可再生能源在荷兰占比依然很小,2017年,其占比仅为6.6%,但去年提升到了11.1%,我们预计这一比例到2023年将提升到17%。在可再生能源中,生物能源占比大,而且将继续增大。2017年和去年,生物能源是荷兰可再生能源中的大组成部分,尽管如此,仍在增加生产大量的生物能源。为此,我们采用了很多不同的做法,从这张图表底部的部分,可以了解荷兰生产生物能源的方法。
生物质能有几种技术,一是固体成型燃料技术,以后可以替代煤炭,也可以减少污染,成本比较低,也可以供热;二是液体燃料技术,包括燃料生物油、生物航空燃油、纤维素乙醇等形态;三是气化技术,比如做成沼气,主要是选择合成气、低碳醇醚等,可以作为气态的能源来利用;四是发电,生物质燃烧发电已经有很多地方都在做。
想特别强调一点的是,生物质可以替代化石原料,制造有机化学品,从而推动生物质能的经济发展,也是一个重要方向。由此可见,生物质能应该说是可以多种形态对能源作出贡献的非化石能源,因为它既可以发电也可以非发电,有固态、液态、气态各种形态,在未来的高比例可再生能源中是一支稳定、连续、易操作的基荷。还有一部分非能源形态,有经济效益的利用,比如说做肥料。在我国中东部地区有大量的可再生能源资源,包括生物质能,在能源电力中可作出实际贡献。
生物质颗粒可再生能源在交通运输业的占比中,芬兰同样位列欧盟第二。从上表来看,芬兰2030年的目标要比2019年高出很多。目前生物燃料强制性混合指令已在实施。要求混合比例增加的部分主要为可再生柴油,氢化植物油HVO,生物乙醇和沼气来填补。芬兰大约90%的生物能源来源于木材,在林业发展中得到了大力应用。还有一个占比比较大的是其他工业木材能源,要么在工业场地直接使用,要么供热和发电。另外,主要用于供热的小规模木材的使用占比也不小,同时生物废弃物和液体生物燃料在交通运输行业的应用也在持续增长。接下来,我们来看生物能源的市场前景和趋势。今年春天,欧盟通过了一项欧洲气候法。其中包含一个约束性目标,即与1990年相比,2030年前减排至少达到55%,新目标目前正在落实。7月中旬,欧盟会提出了气候变化一揽子政策方案。为了实现新目标,其中多数法案具有法律效力,这一页展示了所包含的具体方案。
生物质颗粒是一种生态友好的零碳能源,是容易实现循环经济的重要能源形式。在生物质能的利用中,大自然帮人类把二氧化碳重新回归于有机物中,这难的一环是由大自然完成的。因此生物质能与当下其他的商业化能源相比较,具有明显的优势。,生物质能环境外部性较低,很容易实现循环经济;第二,在生物质能的利用过程中,可以同时解决电和热的问题,这是其他新兴可再生能源形式,如风电、光伏很难自发解决的一个问题。第三,中国要构建以可再生能源为主体的新型电力系统,而解决不同时间尺度的储能问题,是实现安全稳定的新型电力系统的前提。就此而言,生物质可以作为解决不同时间尺度的储能问题能源选择,包括小时级的、跨天的、跨周的、甚至是跨季节的。与此同时,生物质是非常少有的能够实现负碳的机会,也非常利于国家发展,它可以推进乡村振兴,助力消除农村的能源贫穷问题。
以上就是关于吉安木屑生物颗粒值得信赖「乐川生物颗粒」儿童顺口溜全部的内容,关注我们,带您了解更多相关内容。